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Abstract

A finite non-empty word z is said to be a border of a finite non-empty word w if
w = uz = zv for some non-empty words u and v. A finite non-empty word is said to be
bordered if it admits a border, and it is said to be unbordered otherwise. In this paper, we
give two characterizations of the biinfinite words of the form ωuvuω, where u and v are
finite words, in terms of its unbordered factors.

The main result of the paper states that the words of the form ωuvuω are precisely the
biinfinite words w = · · · a−2a−1a0a1a2 · · · for which there exists a pair (l0, r0) of integers
with l0 < r0 such that, for every integers l ≤ l0 and r ≥ r0, the factor al · · · al0 · · · ar0 · · · ar

is a bordered word.
The words of the form ωuvuω are also characterized as being those biinfinite words w

that admit a left recurrent unbordered factor (i.e., an unbordered factor of w that has an
infinite number of occurrences “to the left” in w) of maximal length that is also a right
recurrent unbordered factor of maximal length. This last result is a biinfinite analogue of
a result known for infinite words.

1 Introduction

This paper is concerned with a combinatorial problem on biinfinite words which has arisen in
the study of a certain class of finite semigroups: the pseudovariety LSl of locally idempotent
and locally commutative semigroups. The class LSl is formed by the finite semigroups S such
that eSe = e for each element e = e2 ∈ S, and is associated via Eilenberg’s correspondence
with the well known class of locally testable languages, as shown independently by Brzozowski
and Simon [2] and McNaughton [7]. Recall that a language L is locally testable if one can
decide membership of a given word u in L by considering the factors of a fixed length k of u
and its prefix and suffix of length k−1. Alternatively, a locally testable language is a language
that is a Boolean combination of languages of the form wA∗, A∗w and A∗wA∗, where A is a
finite alphabet and w is a word on A. On the other hand, the free pro-LSl semigroups, —
topological semigroups which play an important role in the study of the pseudovariety LSl, —
were described by the author [3] in terms of infinite and biinfinite words. It is not surprising
therefore that the study of the pseudovariety LSl must often use combinatorial properties of
words, namely involving infinite and biinfinite words and factors of words.
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The original question, motivated by the study mentioned above, is an interesting property
involving the notion of unbordered word. That question is the following: given a biinfinite
word w and a fixed occurrence of a factor of w, is there an occurrence, extending the fixed
one, of an unbordered factor of w? Of course the answer to this problem is negative in general,
since for the words of the form ωuvuω, any factor extending uvu is bordered. In this paper,
we show that the words of the form ωuvuω are the only biinfinite words for which the question
above has a negative answer. The ultimately periodic words of the form ωuvuω are also shown
to be the unique biinfinite words that admit a left recurrent unbordered factor of maximal
length that is also a right recurrent unbordered factor of maximal length.

Also known as “primary words” and “mots latéraux”, unbordered words have been widely
studied by the community. This article deals with the relation between the length of unbor-
dered factors and periodicity in infinite and biinfinite words, and it constitutes an extension
of previous works on this subject [1, 4, 5, 6]. In particular, the second characterization of the
words of the form ωuvuω mentioned above, is the “biinfinite version” of a result established by
Ehrenfeucht and Silberger [5] for infinite words.

2 Preliminaries

In this section we recall basic definitions and introduce notations that will be used later. We
follow in most part the terminology of Lothaire [6] for finite words and of Perrin and Pin [8]
for infinite and biinfinite words.

A finite non-empty set A is called an alphabet. The elements of A are called letters. A
(finite) word on A is a finite sequence w = (a1, . . . , an) of elements of A. We write also
w = a1 · · · an. The integer n is called the length of w. The empty sequence, called the empty
word, is denoted by 1 and its length is 0. The length of a word w is denoted by |w|. We
denote by A∗ the set of words on A and by A+ the set of non-empty words. The product of
two words w = a1a2 · · · an and z = b1b2 · · · bm is the word wz = a1a2 · · · anb1b2 · · · bm.

A word w ∈ A+ is said to be primitive if it is not a power of another word; that is, if
w = un for some u ∈ A∗ and n ∈ N implies w = u (and n = 1).

Two words w and z are said to be conjugate if there exist words u, v ∈ A∗ such that

w = uv, z = vu.

A biinfinite (resp. right infinite, left infinite) word on A is a sequence w = (an)n of letters
of A indexed by Z (resp. N, −N). We denote

w = · · · a−2a−1a0a1a2 · · · (resp. w = a1a2 · · · , w = · · · a−2a−1).

The sets of biinfinite, right infinite and left infinite words on A will be denoted, respectively,
by AZ, AN and A−N.

For words u = a1a2 · · · an ∈ A+ and v = b1b2 · · · bm ∈ A∗, we denote by vuω the right
infinite word

vuω = vuuu · · · = b1b2 · · · bma1a2 · · · ana1a2 · · · ana1a2 · · · an · · ·
obtained by the infinite repetition (to the right) of the word u after the word v. The word vuω

is said to be ultimately periodic and u is said to be a period of vuω. We will use the notation
ωuv to represent the (ultimately periodic of period u) left infinite word

ωuv = · · ·uuuv = · · · a1a2 · · · ana1a2 · · · ana1a2 · · · anb1b2 · · · bm
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obtained by the infinite repetition (to the left) of the word u after the word v.
Let w = · · · a−2a−1a0a1a2 · · · be a biinfinite word. For integers i and j such that i < j,

we denote
w[i, i[= 1, w[i, j[= ai · · · aj−1, w[i,+∞[= aiai+1 · · · .

Analogously one would define w]i, j], w[i, j], w] −∞, j[, etc. When they make sense, these
notations are used also for finite and infinite words. We say that w is of the form

ωuvuω

where u ∈ A+ and v ∈ A∗, if there exists an integer i such that w]−∞, i[= ωu, and w[i, +∞[=
vuω.

A finite word u ∈ A∗ is a factor of a (finite, infinite or biinfinite) word w if u = w[i, j[ for
some integers i and j. In this case w[i, j[ is said to be an occurrence of the factor u in w. We
will say also “the occurrence u = w[i, j[ in w” instead of “the occurrence w[i, j[ of u in w”.

Let w be a (finite, infinite or biinfinite) word. The set of letters that occur in w is denoted
by Alph(w).

Let w ∈ AN ∪ A−N be an infinite word. A factor of w that has an infinite number of
occurrences in w is said to be recurrent in w. If each factor of w is recurrent in w, then w is
said to be recurrent.

Let w ∈ AZ be a biinfinite word. A factor u ∈ A+ of w is said to be left recurrent in w if
u is recurrent in a (and so in any) left infinite word of the form w]−∞, i]. Analogously one
can define the notion of a right recurrent factor of w. A factor of w that is simultaneously
left recurrent and right recurrent is called recurrent.

A word u ∈ A∗ is said to be a prefix (resp. a suffix) of a word w ∈ A∗, and w is said to be
a right extension (resp. a left extension) of u, if there exists a word v such that w = uv (resp.
w = vu); if u 6= w, then u is said to be a proper prefix (resp. a proper suffix) of w and w is
said to be a proper right extension (resp. a proper left extension) of u.

Let y be a bordered word and let y be the shortest border of y. Then y is an unbordered
word since, otherwise, y would admit a border z and, clearly, this word z would be a border
of y shorter than y. Notice that |y| ≥ 2|y| so that

y = yuy

for some u ∈ A∗ since, otherwise, y would have a border.
Let w ∈ A+ be a word (bordered or not) with |w| ≥ 2. We will represent by −→w (resp.←−w ) the longest unbordered word that is a proper prefix (resp. suffix) of w. For instance

w = ababbaabb is an unbordered word such that −→w = ababb and ←−w = aabb.

3 The characterizations

We begin by presenting a characterization of the ultimately periodic right infinite words. This
result was established by Ehrenfeucht and Silberger in [5, Lemma 3.3].

Lemma 3.1 A right infinite word w ∈ AN is ultimately periodic if and only if there exists an
unbordered factor of w of maximal length that is recurrent in w.

Remark that, if w ∈ AN is an ultimately periodic word of period u and x is an unbordered
factor of w as stated in this last result, then x is a conjugate of the (unique) primitive word
z such that u = zn for some n ∈ N. In particular, x is a period of w.

The following observation will be important in what follows. This result was given as a
remark in [1] and established and proved in [4, Corollary 2.8].
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Lemma 3.2 Let w ∈ A+ be such that −→w = az, where a ∈ A and z ∈ A+, and let b ∈ A be a
letter distinct from a. If bz is a factor of w, then w is an unbordered word and bz only occurs
in w as a suffix.

We can now state and prove the main result of the paper.

Theorem 3.3 Let w ∈ AZ be a biinfinite word. The following conditions are equivalent:

1) The word w is of the form ωuvuω for some finite words u and v;

2) There exists an unbordered recurrent factor x of w such that:

i) x is of maximal length between the unbordered left recurrent factors of w;

ii) x is of maximal length between the unbordered right recurrent factors of w;

3) There exists an occurrence w[l0, r0] in w such that, for every integers l ≤ l0 and r ≥ r0,
the factor w[l, r] is a bordered word.

Proof. 1) ⇔ 2) This equivalence is an immediate consequence of Lemma 3.1 and its dual for
left infinite words.

1) ⇒ 3) Suppose that w is of the form ωuvuω. Then there exists an integer i such that
w]−∞, i[= ωu and w[i,+∞[= vuω. Consider the occurrence

uvu = w[i− |u|, i + |vu| − 1] = w[l0, r0].

Let l ≤ l0 and r ≥ r0 be two integers and consider the factor w = w[l, r] of w. Then, there
exist a proper suffix u′ of u, a proper prefix u′′ of u and positive integers k′ and k′′ such that

w = u′uk′vuk′′u′′.

If u′ = u′′ = 1, then u is a border of w. If u′ 6= 1 or u′′ 6= 1, then u′u′′ is a border of w.
Therefore, the factor w = w[l, r] is a bordered word.

3) ⇒ 1) Let w[l0, r0] be an occurrence of a factor in w and suppose that for every integers
l ≤ l0 and r ≥ r0, the factor w[l, r] is a bordered word. Denote by wl0 the left infinite word
w]−∞, l0[ and by wr0 the right infinite word w]r0, +∞[.

We begin by proving the following crucial lemma.

Lemma 3.4 The words wl0 and wr0 are recurrent and have the same factors.

Proof. We prove the lemma by induction on the length of the factors of wl0 and wr0 .
Let a = w[i, i], with i < l0, be a letter of Alph(wl0) and let q = r0 − i. Let y = w[i, n]

where n > r0 + q (as illustrated in Fig. 1). Since y contains the occurrence w[l0, r0], y is
bordered. The shortest border y of y is an unbordered word that is a prefix of y. Therefore,
the length of y is ≤ q since otherwise y would contain the occurrence w[l0, r0]. Hence, the
choice of n and the fact that y is a suffix of y show that y is a factor of wr0 . Since a is the
first letter of y, we deduce that a is a factor of wr0 .

Furthermore, since n is arbitrarily large, this proves that a has an infinite number of occur-
rences in wr0 . By symmetry, we conclude that

Alph(wl0) = Alph(wr0)
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wl0 w[l0, r0] wr0

y = w[i, n]
y y

a a

Figure 1:

and that each letter of Alph(wl0) is recurrent in both wl0 and wr0 .
As a consequence, if Alph(wl0) =Alph(wr0) = {a} for some letter a, then wl0 = ωa and

wr0 = aω and the lemma is clearly valid. For the rest of the proof, we assume that Alph(wl0)
is not trivial.

Let now k > 1 be an integer and assume by induction hypothesis that wl0 and wr0 have
the same factors of length k− 1 and that these factors are recurrent in both wl0 and wr0 . Let

w = w[i, j]

be a factor of wl0 of length k.
Suppose first that w is of the form w = ak for some letter a. By assumption, Alph(wr0)

contains a letter b 6= a. Let b = w[n, n] be an occurrence in wr0 and let y = w[i, n]. Then
y is bordered and, as b is recurrent in wr0 , we may choose the occurrence of b in such a way
that the occurrence of y as a suffix of y is contained in wr0 . On the other hand b is a suffix
of y. Since b is not a factor of w and y is a prefix of y, we deduce that w is a prefix of y.
Therefore w is a factor of wr0 . Moreover since n is arbitrarily large and the length of y is
upper bounded, we conclude that w is recurrent in wr0 .

Suppose now that w is not of the form w = ak with a ∈ A. Let w′ be the suffix of w of
length k − 1. By induction hypothesis, w′ is recurrent in wr0 . Let

w′ = w[m,n]

be an occurrence in wr0 . We will consider two cases.

First case Suppose first that w is an unbordered word. Let y = w[i, n]. The word y is
bordered and, since n can be chosen arbitrarily large, we may assume that the occurrence
of y as a suffix of y is contained in wr0 . Since w′ is a suffix of w and w is unbordered,
w′ does not have any suffix that is a prefix of w. Therefore |y| > |w′| = k − 1 and so
w is a prefix of y. Thus, we deduce that w is a factor of wr0 . Moreover, as above, we
conclude that also in this case w is recurrent in wr0 .

Second case Suppose now that w is a bordered word. Let

−→w = az

be the longest unbordered proper prefix of w, where a ∈ A. Recall that we are assuming
that w is not of the form w = ak with a ∈ A. Therefore z is not the empty word since
Alph(w) contains at least one letter c 6= a and w is not of the form w = ak−1c because
we are assuming w to be bordered. Let b be the letter b = w[m− 1,m− 1] and consider
the occurrence

bw′ = w[m− 1, n].
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If b is equal to a, then bw′ = w and so w is a factor of wr0 since we may assume that
m− 1 > r0.

Suppose that b 6= a. As z is a prefix of w′, the word bz = w[m − 1, h], where m − 1 <
h ≤ n, is a prefix of bw′. On the other hand, by Lemma 3.2, the word bz is not a factor
of w since w is bordered. Consider the bordered word y = w[i, h]. Since y is a word of
the form

y = azy′bz (y′ ∈ A∗)

and az is an unbordered word, we have |y| ≥ |az| = |bz| whence bz is a suffix of y. On
the other hand y is of the form

y = wy′′bz (y′′ ∈ A∗)

and so, since bz is not a factor of w, |y| > |w|. This proves that w is a prefix of y. Since,
as above, we may assume that y is a factor of wr0 , we deduce that w is a factor of wr0 .
Moreover, as above, w is recurrent in wr0 .

Therefore, we have proved in all cases that w is a recurrent factor of wr0 . By symmetry,
we deduce that wl0 and wr0 have the same factors of length k and that these factors are
recurrent in both wl0 and wr0 .

The result follows by induction. 2

Let us now return to the proof of Theorem 3.3. Let r1 < r0 be the maximal integer such
that there exists an unbordered factor x of wl0 with an occurrence of the form

x = w[i, r1] (1)

where i ≤ l0. Now, let
x1 = w[l1, r1]

be the unbordered word of the form (1) with minimal length; that is, such that l1 ≤ l0 is
maximal.

Remark. Notice that r1 ≥ l0 since, for instance, the first letter w[l0, l0] of the factor w[l0, r0]
is surely an unbordered factor of wr0 and l0 < r0 since w[l0, r0] is bordered.

Notice furthermore that the word w]−∞, r1] has the same factors as wr0 . That is, every
word of the form w[i, r1] is a factor of wr0 . This is clear when i ≥ l0 since in this case w[i, r1]
is a factor of x1 and x1 is a factor of wr0 . That w[i, r1], with i ≤ l0, is a factor of wr0 can be
shown as in Lemma 3.4.

Notice at last that Alph(wl0) =Alph(x1). In fact, if a ∈Alph(wl0) and a = w[n, n] is an
occurrence in wr0 , then y = w[l0, n] is bordered and a ∈Alph(y). Now, y is of the form (1)
whence y is a factor of x1 and so a ∈Alph(x1).

The next lemma will permit us to obtain the word u stated in condition 1) of Theorem 3.3.

Lemma 3.5 For every integer k > |x1|, there exists exactly one left extension w of x1 of
length k such that w is a factor of wl0.

Proof. Let k > |x1| be an integer. The factor

w = w[r1 − k − 1, r1] = w[r1 − k − 1, l1[x1
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of wl0 is a left extension of x1 of length k.
Now, suppose that there exists a factor w′ 6= w of wl0 of length k such that x1 is a suffix

of w′. Assume that k is the minimal integer for which this happens. Then

w = aw′′ and w′ = bw′′

where a and b are the (distinct) first letters of w and w′, respectively, and w′′ is the suffix of
length k − 1 of both w and w′. In particular Alph(wl0) is not trivial and so, we deduce from
the remark above that Alph(x1) is also not trivial and that −→w is of the form

−→w = az

for some prefix z 6= 1 of w′′. From Lemma 3.2, we deduce that either bz is not a factor of w
or bz only occurs in w as a suffix. Let us consider these two cases.

First case Suppose that bz is not a factor of w. Since wl0 and wr0 have the same factors,
we can choose an occurrence bz = w[m,n] in wr0 and consider the bordered word
y = w[r1 − k − 1, n]. Now, as in the second case of Lemma 3.4, one can deduce that
|y| > |w|. This is absurd because in that case y is an unbordered factor of wl0 with an
occurrence of the form

y = w[r1 − k − 1, i]

with r1 < i < r0, contradicting the choice of r1.

Second case Suppose that bz is a suffix of w. Then w′′ is of the form w′′ = ebz for some
e ∈ A∗. Let w′ = bw′′ = w[m,n] be an occurrence of w′ in wr0 and consider the bordered
word y = w[r1−k− 1, n]. As in the proof of the second case in Lemma 3.4, one deduces
that bz is a suffix of y. Therefore, since bz only occurs in w as a suffix, |y| ≥ |w|. But,
as we saw in the first case, |y| ≤ |w|. Therefore |y| = |w| and so w = y = w′. This
contradicts the assumption that w 6= w′.

Therefore w′ does not exist, concluding the proof of the lemma. 2

Let us return again to the proof of Theorem 3.3. Let x1 = w[i1, j1] and x1 = w[i2, j2] be,
respectively, the first and the second occurrences of x1 in wr0 . Let w = w[i1, j2]. Then w has
exactly two occurrences of x1 and it is of the form

w = x1u = yx1

for some words u, y ∈ A+. Moreover, since x1 is unbordered, |u| ≥ |x1| whence u is a left
extension of x1.

Let w′ be any factor of wr0 with exactly two occurrences of x1, being those occurrences
of x1 as prefix and as suffix of w′. Then w′ = w since otherwise, by Lemma 3.5, one of w
or w′ would be a proper left extension of the other, which is impossible since they have both
exactly two occurrences of x1.

Since x1 is recurrent in wr0 , this means that wr0 is of the form wr0 = zuω for some z ∈ A∗.
Moreover, since wr0 is recurrent, the factor z of wr0 is of the form z = u′uk for some suffix u′

of u and k ∈ N0, so that
wr0 = u′uω.

On the other hand, since wl0 has the same factors of wr0 , wl0 is of the form

wl0 = ωuu′′
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for some prefix u′′ of u. We conclude that w is of the form

ωuvuω

where v = u′′w[l0, r0]u′, which establishes condition 1) of Theorem 3.3.
This concludes the proof of Theorem 3.3. 2
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